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Abstract. We study a two-time-scale system of jump-diffusion stochastic differential equations.
We analyze a class of multiscale integration methods for these systems, which, in the spirit of [1],
consist of a hybridization between a standard solver for the slow components and short runs for
the fast dynamics, which are used to estimate the effect that the fast components have on the slow
ones. We obtain explicit bounds for the discrepancy between the results of the multiscale integration
method and the slow components of the original system.

1. Introduction. A wide variety of problems in the natural sciences give rise
to singularly perturbed systems of stochastic differential equations (SDEs). In many
cases, one is only interested in predicting the time evolution of some “slow compo-
nent”, yet this cannot be done, in a direct approach, without solving the full system
of equations. No computer can deal with such a disparity of scales. In the past
four decades, singularly perturbed systems have been the focus of extensive research,
within the framework of averaging methods. The separation of scales is then taken
to advantage to derive a reduced equation, which approximates the evolution of the
slow components. Conditions under which the averaging principle can be applied to
this kind of systems are well known in the classical literature. While the averaging
principle and its resulting effective dynamics provide a substantial simplification of
the original system, it is often impossible, or impractical to obtain the reduced equa-
tions in closed form. This has motivated the development of multiscale integration
algorithms [2, 1]. Multiscale integration schemes along the lines described in [1] have
been studied for different systems of SDEs [3, 4]. However, similar questions for jump-
diffusion processes are not yet fully addressed. We consider two-time scale systems of
jump-diffusion SDEs, of the form

dxε
t = a(xε

t, y
ε
t) dt + b(xε

t, y
ε
t) dBt + c(xε

t, y
ε
t) dPt xε

0 = x0 (1.1a)

dyε
t =

1
ε
f(xε

t, y
ε
t ) dt +

1√
ε
g(xε

t, y
ε
t) dWt + h(xε

t, y
ε
t) dN ε

t yε
0 = y0, (1.1b)

where xε
t is an n-dimensional jump-diffusion process and yε

t is an m-dimensional jump-
diffusion process. The functions a(x, y) ∈ Rn and f(x, y) ∈ Rm are the drifts, the
functions b(x, y) ∈ Rn×d1 and g(x, y) ∈ Rm×d2 are the diffusion coefficients, and
the functions c(x, y) ∈ Rn and h(x, y) ∈ Rm are the jump coefficients; Bt and Wt

are d1, d2-dimensional independent Wiener processes, Pt is a scalar simple Poisson
process with intensity λ1, and N ε

t is a scalar simple Poisson process with intensity λ2
ε .

The parameter ε represents the ratio between the natural time scales of the xε
t and yε

t

variables. We are concerned with situations where ε ¿ 1, i.e. where a separation of
time scales prevails; in such case the vector xε

t is called the “slow component” of the
system, and the vector yε

t is called the “fast component” of the system.
Within the framework of averaging methods, the separation of scales is taken to

advantage to derive, in the limit ε → 0, a reduced equation for an n-dimensional
process x̄t, which approximates the slow component xε

t [5, 6, 7, 8, 9]. Define Lε the
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differential operator associated with (1.1) to be, for F ∈ C2
0 (Rn+m),

Lε = L1 +
1
ε
L2,

where

L1F = a(x, y)∂xF +
1
2
trace

∂2F
∂x2

· bb>(x, y) + λ1 [F(x + c(x, y))−F(x)]

L2F = f(x, y)∂yF +
1
2
trace

∂2F
∂y2

· gg>(x, y) + λ2 [F(y + h(x, y))−F(y)] .

Assume that for every fixed x the rapid variables, governed by (1.1b), induce a unique
invariant, ergodic measure µx(dy). Denote

ā(x) =
∫

Rm

a(x, y)µx(dy)

b̄(x)b̄>(x) =
∫

Rm

b(x, y)b>(x, y)µx(dy).
(1.2)

With this notation, it was shown in [10], that there exists a differential operator L̄ of
the averaged process for F ∈ C2

0 (Rn) which is defined by

L̄F = ā(x)∂xF +
1
2
trace

∂2F
∂x2

· b̄b̄>(x) + λ1

∫
[F(x + c(x, y))−F(x)] µx(dy).

Using the definition of L̄ we can define the effective dynamics x̄t = x̄(t). The drift
coefficient ā(x̄) of the averaged operator L̄ and the diffusion coefficient b̄(x̄) are given
in (1.2). The jumps of the averaged operator can be constructed as follows. The
jump rate is λ1. Let {τn} denote the jump times. Then x̄(τn)− x̄(τ−n ) = c(x̄(τ−n ), ξn),
where ξn has distribution µx̄(τ−n )(dy). It is shown in [10] that as ε → 0, xε

t converges
weakly, on every finite interval [0, T ], to the solution x̄t of a closed equation of the
form

dx̄t = ā(x̄t) dt + b̄(x̄t) dBt +
∫

c(x̄t, ξ)Px̄t(dsdξ), (1.3)

where Px(dsdξ) is a Poisson measure with jump rate λ1 and jump distribution µx(·).
There are cases in the framework of the averaging principle when one is interested

in the limit behavior of a trajectory rather than the limit behavior of the distribution
of trajectories. In this case a stronger form of convergence is needed. Analysis of the
strong, i.e., uniform in time, convergence for a two-time-scale jump-diffusion system
is given in [11]. It is shown that the strong convergence is valid only if the coefficients
b and c in (1.1a) do not depend on the fast variable, i.e., b = b(x), c = c(x), which
implies that (1.1a) has the following form,

dxε
t = a(xε

t, y
ε
t) dt + b(xε

t) dBt + c(xε
t) dPt xε

0 = x0. (1.4)

As ε → 0, xε
t converges in the strong sense, on every finite interval [0, T ], to the

solution x̄t of a closed equation of the form

dx̄t = ā(x̄t) dt + b(x̄t) dBt + c(x̄t)dPt. (1.5)
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While the averaging principle and its resulting effective dynamics (1.3), (1.5) pro-
vide a substantial simplification of the original system (1.1), it is often impossible, or
impractical to obtain the reduced equations in closed form (for example, because the
invariant measure µx is unknown, or because integrations cannot be performed ana-
lytically). This has motivated the development of two types of multiscale algorithms
which overcome this difficulty: coarse projective integration methods [2, 12, 13] (see
also [14] for the non-“coarse”, ODE case) developed within the equation-free frame-
work [15]; and multiscale integrators [1] which were presented in the framework of the
heterogeneous multiscale methods [16]. Coarse projective integration has focused on
the case where explicit knowledge of the original system is not available (for example,
the available simulator is in the form of a “black box”). In that case short bursts of
appropriately initialized fine scale simulations are used to estimate on demand the nu-
merical quantities required to perform scientific computing tasks with coarse-grained
models (time derivatives and, for the case of stochastic coarse-grained models, the
local effective noise drift and diffusivity, e.g. [17]). The present paper deals with the
case where one has full knowledge of the original, singularly perturbed, system. In this
case the multiscale integrators introduced in [1], which take advantage of the explicit
knowledge of the right-hand-sides of the singularly perturbed dynamical systems, are
more suitable. This knowledge together with the averaging principle is the key factor
of the multiscale integrators, which aim at integrating the averaged equations to get
an approximation of the dynamics in the original system. Analysis for the multiscale
integrators was presented in [3]. In [4] the authors extended the idea of multiscale
integration for a deterministic effective model to the case where the effective model is
a stochastic one. Here we extend the idea to the case where the effective dynamics are
described by stochastic processes that admit jumps and discontinuous trajectories.

The use of the averaging principle to compute effective jump processes was imple-
mented in a different context: a research area where the dynamics are stochastic and
consist of jumps is the stochastic simulation of kinetic chemical reactions, also known
as the Gillespie stochastic simulation algorithm, SSA [18]. The time evolution is de-
scribed as follows. A state space of the system is a vector consisting of the number of
molecules of each species. The time gap between events is distributed with a Poisson
distribution that depends on the state space location. The event that takes place is
chosen according to a rate function which depends on the state space location. This
model consists of no drift, only jumps. In the past five years extensive progress had
been made in describing the effective dynamics for chemical kinetic systems that take
place on vastly different time scales [19, 20, 12, 21, 22].

In its simplest formulation, the multiscale integration scheme can be described
as follows: Let ∆t be a fixed time step, and Xn be the numerical approximation to
the coarse variable, x̄, at time tn = n∆t. Given the coarse variable at the n-th time
step, Xn, we take some initial value for the fast component Y n

0 , and solve (1.1b)
numerically with step size δt and x = Xn fixed. We denote the discrete variables
associated with the fast dynamics at the n-th coarse step by Y n

m, m = 0, 1, . . . , M .
As in [1] the numerical solver used to generate the sequence Y n

m is called the micro-
solver (or micro-integrator). The micro solver as introduced in [1] is a numerical
approximation of the auxiliary process which was introduced in the work of [8] and
[7]. The simplest choice is the Euler scheme,

Y n
m+1 = Y n

m +
1
ε
f(Xn, Y n

m) δt +
1√
ε
g(Xn, Y n

m)∆Wn
m + h(Xn, Y n

m)∆Nn
m,

where ∆Wn
m are Brownian displacements over a time interval δt and ∆Nn

m are Poisson
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increments with intensity λ2
ε . The Y n

m are generated in order to give us an approxi-
mation of the ergodic measure µx(dy). This allows us to omit the ε dependency from
the micro solver, hence we use instead,

Y n
m+1 = Y n

m + f(Xn, Y n
m) δt + g(Xn, Y n

m)∆Wn
m + h(Xn, Y n

m)∆Nn
m, (1.6)

where ∆Wn
m are Brownian displacements over a time interval δt and ∆Nn

m are Poisson
increments with intensity λ2. Since we assume that the y dynamics is ergodic, we may
choose, among other choices, Y n

0 = Y n−1
M (In Section 5 we further discuss this point).

Having generated the trajectories Y n
m, the functions ā, b̄ and the jump amplitude ξ

are estimated by

A(Xn) =
1
M

M∑
m=1

a(Xn, Y n
m) (1.7a)

B(Xn)B>(Xn) =
1
M

M∑
m=1

b(Xn, Y n
m)b>(Xn, Y n

m) (1.7b)

c(Xn, ξ) = c(Xn, Y n
M ). (1.7c)

B(Xn) can be extracted from B(Xn)B>(Xn) through a Cholesky decomposition.
Finally, to reduce the statistical noise, several independent realizations of the micro-
solver can be carried out, in which case expression (1.7) for A(X) and B(X) involve
an additional averaging over these independent realizations.

Inspired by the limiting equation (1.3), Xn is evolved in time by an Euler step,

Xn+1 = Xn + A(Xn)∆t + B(Xn)∆Bn + c(Xn, Y m
n )∆Pn, (1.8)

where ∆Bn are Brownian displacements over a time interval ∆t and ∆Pn are the
increments of the Poisson process over a time interval ∆t. We refer to (1.8) as the
macro-solver (or, macro integrator).

Equations (1.8), (1.6), and (1.7) define the multiscale integration scheme.
The functions A(X), B(X) approximate the functions ā(x), b̄(x), which result

from the averaging (1.2) over an ergodic measure. The ergodic property implies that
instead of ensemble averaging we can use averaging over paths of the rapid variables
with fixed x. Since, by assumption, these averages cannot be performed analytically,
they are approximated by an empirical average over short runs of the fast dynamics.
These “short runs” are over time intervals that are sufficiently long for empirical
averages to be sufficiently close to their limiting ensemble averages, yet sufficiently
short for the entire procedure to be efficient compared to the direct solution of the
coupled system. Note that the time interval is long enough to guarantee that Y m

x

will have a distribution close enough to the distribution of the invariant measure
µx, which explains the approximation for the averaged jump distribution. Hence the
approximation for the jump coefficient is given by c(x, Y m

n ).
This paper deals with (1.1). The motivation for such a problem stems from

attempts to model elements of a financial market that involves two kind of securities.
One kind is without risk, a bond, and is modeled by a linear ODE. The other kind is
a security with risk, a stock. The total change in the stock price is assumed to be the
composition of two types of changes [23]:

• The normal variations in price due to a temporary imbalance between supply
and demand and other information that causes marginal changes in the stock’s
value. This component is modeled by a standard Wiener process with a
constant variance per unit time and continuous sample paths.
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• The “abnormal” variations in price due to the arrival of important new in-
formation about the stock that has more than a marginal effect on the price.
These perturbations usually occur as finite discontinuities.

Hence the prices per share can be modeled by a diffusion process with jumps, or a
stochastic differential equation with jumps (JSDE). The drift coefficient is the instan-
taneous conditional expected relative change in price per unit time, while the diffusion
coefficient is the instantaneous conditional variance per unit time. The jumps, which
represent the arrival of new information, occur with a given mean number of arrivals
per unit time.

It is often the case that the securities change over more than one time scale. The
value of a financial instrument can change in hours or days, while the value of other
financial instruments will change only over a time period of months or years. In [24]
the authors study the pricing of defaultable derivatives. In particular, they assume
an Ornstein-Uhlenbeck process for the interest rate, and a two-factor diffusion model
for the intensity of default. They find from empirical evaluation that the time-scale of
the slow factor is on the order of three months. Empirical evidence of a fast volatility
factor with a characteristic mean-reversion time of a few days was found in the analysis
of high frequency S&P 500 data in [25].

In this paper we analyze the multiscale integration scheme for systems of the form
(1.1). The contribution of this paper is the following. We derive estimates for the
strong (pathwise) error between the solution x̄t of the effective dynamics (1.5) and
the solution Xn of the multiscale integration scheme (1.6),(1.7a) and (1.8). Recall in
that case the use of (1.4) instead of (1.1a). Specifically, we obtain an error estimate
of the form

E sup
n≤T/∆t

|x̄tn −Xn|2 ≤ C

(
∆t +

− logα Mδt + 1
Mδt

+
1
M

+
√

δt

)
.

This convergence is uniform within the whole time interval [0, T ]. We also obtain a
weak convergence estimate between the solution x̄t of the effective dynamics (1.3) and
the solution Xn of the multiscale integration scheme (1.6),(1.7) and (1.8). Specifically
we obtain,

sup
n≤T/∆t

∣∣EF(X̄n)− EF(Xn)
∣∣ ≤ C

{√
− logα Mδt + 1

Mδt
+

1
M

+
√

δt +
√

∆t

}
.

This result extends the analysis in [3], beyond the case where the slow dynamics
(and hence the limiting dynamics) are deterministic, and beyond the case where the
dynamics are stochastic, yet only consist of continuous paths, which was analyzed in
[4].

The paper is organized as follows. Section 2 states the lemmas and theorem for
the strong case. Section 3 contains the proof for the strong case. Section 4 deals with
weak convergence, and Section 5 contains our discussion.

2. Analysis of the multiscale integration scheme. In this section we ana-
lyze the convergence of the numerical method defined by eqs. (1.6), (1.7a) and (1.8).
Specifically, we derive an estimate for the distance between the computed solution Xn

and the solution x̄t of the effective dynamics (1.5) at time t = tn. We prove strong,
i.e., uniform in time, convergence. Our main result in this section is Theorem 2.10.
For the sake of readability we state in this section our assumptions, lemmas and the-
orems, deferring all proofs to the next section. The analysis follows a structure based
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on the work of [8] and [7]: an introduction of a well posed auxiliary process which
is based on fixing the slow variables. The auxiliary process is compared with the
effective dynamics. This leads to estimating the terms in the right hand side (the
drift and diffusion coefficient, and jump components). As shown in [3], additional
comparisons are needed for the numerical methods. In [3] the numerical solution of
the effective equation based on a given macro-solver is compared to the evolution of
the slow variable in the multiscale integrator based on the same macro-solver. We
also follow this strategy.

Throughout this work, the following assumptions are made:
Assumption 2.1.
A1. The functions a = a(x, y), b = b(x) and c = c(x) in (1.1a) (or (1.4)) are mea-

surable, Lipschitz continuous, and hence have linear growth bounds: specifi-
cally, there exist constants L,K, such that

|a(x1, y1)− a(x2, y2)|2 + ‖b(x1)− b(x2)‖2 + |c(x1)− c(x2)|2
≤ L2

(|x1 − x2|2 + |y1 − y2|2
)
,

and

|a(x, y)|2 + ‖b(x)‖2 + |c(x)|2 ≤ K2
(
1 + |x|2 + |y|2) .

Here and below we use |·| to denote Euclidean vector norms and ‖·‖ for Frobe-
nius matrix norms.

A2. The functions f(x, y), g(x, y) and h(x, y) in (1.1b) are of class C∞ and have
bounded derivatives of any order; in particular, we can choose the globally
Lipschitz constant Lf (Lg, Lh, resp.) sufficiently large, such that it bounds
the first derivatives of f(g, h resp.) Moreover, f(x, y) is assumed to be a
bounded function of x for all y,

sup
x
|f(x, y)| = cf (y) < ∞,

and g(x, y), h(x, y) are bounded,

sup
x,y

‖g(x, y)‖ = cg < ∞, sup
x,y

|h(x, y)| = ch < ∞.

A3. There exists a constant α > 0, independent of x, such that:

y>g(x, y)g>(x, y)y ≥ α |y|2

for all y ∈ Rm.
A4. There exists a constant β > 2λ2Lh + Lg, independent of x, such that for all

y1, y2 ∈ Rm

(y1 − y2) · [f(x, y1)− f(x, y2)] ≤ −β |y1 − y2|2

for all y ∈ Rm.
In [11] it is proved that under these assumptions the slow component in (1.1)

converges to the solution of the effective dynamics (1.5) in the strong sense.
Note that the effective dynamics does not depend on ε. Also, since the discrete

solution Y n
m obtained by the micro-solver is for Xn fixed, it only depends on the
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ratio δt/ε. The first lemma describes the relation between two JSDEs which differ by
rescaling time.

Lemma 2.1. Let x(t) be the solution of the equation

dx(t) =
1
ε
a(x(t))dt +

1√
ε
b(x(t))dW (t) + c(x(t))dN ε(t)

where W (t) is a Wiener process and N ε(t) is a simple Poison process with intensity
λ/ε. Then x̆(t) = x(tε) is a solution of the stochastic equation

dx̆(t) = a(x̆(t))dt + b(x̆(t))dW̆ (t) + c(x̆(t))dN̆(t),

where W̆ (t) = W (t/ε)√
ε

, and N̆(t) is a simple Poisson process with intensity λ.
Thus, without loss of generality, we may take ε = 1 in (1.6).
Our multiscale integration scheme consists of a macro-solver: an Euler time-

stepper,

Xn+1 = Xn + A(Xn)∆t + b(Xn) ∆Bn + c(Xn)∆Pn, X0 = x0, (2.1)

where A(Xn) is estimated by an empirical average

A(Xn) =
1
M

M∑
m=1

a(Xn, Y n
m), (2.2)

and Y n
m are numerically generated discrete solutions of the family of SDEs

dzn
t = f(Xn, zn

t ) dt + g(Xn, zn
t ) dWn

t + h(Xn, zn
t ) dNn

t , (2.3)

with initial conditions zn
0 = Y n

0 = y0, and a time step δt (the choice of a fixed Y n
0 for

all n simplifies our estimates; in practice, one could take Y n
0 = Y n−1

M for n > 0). Our
micro-solver (1.6) is a particular realization that uses an Euler time-stepper as well,

Y n
m+1 = Y n

m + f(Xn, Y n
m) δt + g(Xn, Y n

m) ∆Wn
m + h(Xn, Y n

m)∆Nn
m, (2.4)

where ∆Wn
m = Wn

(m+1)δt − Wn
mδt are the Brownian increments associated with the

SDEs (2.3), and ∆Nn
m = Nn

(m+1)δt−Nn
mδt are the Poisson increments associated with

the SDEs (2.3).
We also introduce a discrete auxiliary process, X̄n, which is the Euler solution of

the effective dynamics (1.5):

X̄n+1 = X̄n + ā(X̄n)∆t + b(X̄n) ∆Wn + c(X̄n)∆Pn.

As was proved by in [26], the Euler scheme is of order 1/2, which implies the existence
of a constant K0 = K0(T, x0), such that

E sup
0≤n≤bT/∆tc

|x̄(tn)− X̄n|2 ≤ K0 ∆t. (2.5)

Thus, it remains to estimate the difference between the outcome of the multiscale
integration scheme, Xn, and the numerical solution of the effective dynamics, X̄n,
both being discrete-time processes.

The next four lemmas provide mean square estimates for the processes zn
t , Y n

m

and Xn.
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Lemma 2.2. The process zn
t satisfies,

sup
0≤t

E|zn
t |2 ≤ K1,

where K1 = K1(y0) = |y0|2 + 1
β

[
2
β c2

f (0) + c2
g + λ2

2
2
β c2

h + λ2c
2
h

]
.

Lemma 2.3. For small enough δt,

sup
0≤n≤b T

∆t
c

0≤m≤M

E |Y n
m|2 ≤ K2,

where

K2 = K2(y0) = |y0|2 +
2
β

(
c2
g + λ2c

2
h +

2c2
f (0)
β

+
2λ2

2

β
c2
h

)
.

Lemma 2.4. For small enough ∆t,

sup
0≤n≤T/∆t

E|Xn|2 ≤ K3,

where

K3 = K3(T, x0, y0) = e[2(1+λ1)(1+2K2)]T
[
|x0|2 + 2

K2(1 + K2)
1 + 2K2

]
.

Lemma 2.5. The mean square deviation between two successive iterations of the
microsolver satisfies, for small enough δt,

sup
0≤n≤b T

∆t
c

0≤m≤M

E
∣∣Y n

m+1 − Y n
m

∣∣2 ≤ K4 δt,

where K4 = 8
(
c2
g + λ2c

2
h

)
.

Lemma 2.1 implies that the process zn
t is statistically equivalent to a shifted and

rescaled version of yε
t , with x being a parameter, that is, zk

t ∼ yε
(t−tk)/ε.

Menaldi and Robin [27] proved that the dynamic (2.3) is ergodic with invariant
measure µXn (Assumptions A2-A4 )(See also [28]). Moreover, they proved that the
process zn

t satisfy the Doeblin condition hence it is exponentially mixing in the fol-
lowing sense. Let PXn(t, z, E) denote the transition probability of (2.3). Then there
are positive constants γ, α < 1 such that

∣∣PXn(t, z, E)− µXn(E)
∣∣ ≤ γαt,

for every E ∈ B(Rm).
The next lemma establishes the mixing properties of the auxiliary processes zn

t .
Recall that ā(Xn) is the average of a(Xn, y) with respect to µXn , which is the invariant
measure induced by the process zn

t . We denote zn
m = zn

mδt.
Lemma 2.6. For small enough δt, there exist a constant K5 independent of M, δt

s.t.

E
∣∣∣ 1
M

M∑
m=1

a (Xn, zn
m)− ā(Xn)

∣∣∣
2

≤ K5

[− logα Mδt + 1
Mδt

+
1
M

]
. (2.6)
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The next lemma establishes the mean deviation between (2.3) and its numerical
approximation (2.4).

Lemma 2.7. Let zn
t be the family of processes defined by (2.3). For small enough

δt, there exists a constant K8 such that,

max
0≤n≤b T

∆t
c

0≤m≤M

E |Y n
m − zn

m|2 ≤ K8

√
δt, (2.7)

where K8 = (2Lf +λ2Lh)
√

K4
β−2λ2Lh−Lg

.

Lemma 2.8. There exists a constant K6 = K6(T, x0, y0), such that for all 0 ≤
n ≤ bT/∆tc

E |ā(Xn)−A(Xn)|2 ≤ K6

(− logα Mδt + 1
Mδt

+
1
M

+
√

δt

)
.

Lemma 2.9. There exists a constant K7 = K7(T, x0, y0) such that,

E sup
0≤n≤bT/∆tc

|Xn − X̄n|2 ≤ K7

(− logα Mδt + 1
Mδt

+
1
M

+
√

δt

)
,

where K7 = 8T 2K6e
4L2(3T+1+λ1)T .

Combining this result with (2.5) our main theorem readily follows:
Theorem 2.10. There exists a constant K7 = K7(T, x0, y0) such that,

E sup
0≤n≤bT/∆tc

|Xn − x̄(tn)|2 ≤ 2K0 ∆t + 2K7

(− logα Mδt + 1
Mδt

+
1
M

+
√

δt

)
.

Note the sources of the various terms: The first term arises from the truncation
error of the macro-solver. The second and third terms are the deviation of the en-
semble average from the empirical average. The last term is the truncation error of
the micro-solver.

3. Proofs for Section 2. Throughout this section we will need a discrete version
of Gronwall’s inequality. Let Zn be a sequence of positive numbers which, for small
enough δt, satisfy the linear inequality,

Zn+1 ≤ (1 + a δt)Zn + b δt,

then

Zn ≤ ean δtZ0 +
b

a

(
ean δt − 1

)
. (3.1)

Young’s inequality will be used repeatedly, each time however with a different
constant. Let a, b ∈ Rn then for every β > 0,

2 a · b ≤ β |a|2 +
1
β
|b|2 .

Let P (t) be a simple Poisson process with intensity λ and let h(P (t), t) satisfy
the mean square integrability condition on 0 ≤ t ≤ t0, then
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• E
[∫ t

t0
h(P (s), s)dP (s)

]
= λ

∫ t

t0
E [h(P (s), s)] ds

• Letting P̂ (t) = P (t) − λt be the simple mean-zero Poisson process, or the
compensated Poisson process,

E
[∫ t

t0

h(P (s), s)dP̂ (s)
]

= 0

• The Itô-isometry for jump stochastic integrals is given by

E
∣∣∣∣
∫ t

t0

h(P (s), s)dP̂ (s)
∣∣∣∣
2

= λ

∫ t

t0

E |h(P (s), s)|2 ds,

hence

E
∣∣∣P̂ (t + δt)− P̂ (t)

∣∣∣
2

= λdt.

Proof. of Lemma 2.1

x̆(t)− x̆(s) = x(tε)− x(sε) =
1
ε

∫ tε

sε

a(x(u)) du +
1√
ε

∫ tε

sε

b(x(u)) dW (u)

+
∫ tε

sε

c(x(u)) dN(u)

=
1
ε

∫ t

s

a(x(uε)) d(uε) +
1√
ε

∫ t

s

b(x(uε)) dW (uε)

+
∫ t

s

c(x(uε)) dN(uε)

=
∫ t

s

a(x̆(u)) du +
∫ t

s

b(x̆(u)) dW̆ (u)

+
∫ t

s

c(x̆(u)) dN̆(u),

where we used the facts that W̆ (t) = W (εt)√
ε

is a Wiener process, and N̆(t) = N(εt) is

a simple Poisson process with intensity λ = ελ
ε

Proof. of Lemma 2.2 Applying Itô’s chain rule to the process |zn
t |2,

d|zn
t |2 = 2zn

t · f(Xn, zn
t )dt + ‖g(Xn, zn

t )‖2 dt + 2zn
t g(Xn, zn

t )dWn
t

+ 2 zn
t · h(Xn, zn

t )dNn
t + |h(Xn, zn

t )|2 dNn
t .

(3.2)

Taking expectations, and using Itô isometry,

d

dt
E|zn

t |2 = 2Ezn
t · f(Xn, zn

t ) + E ‖g(Xn, zn
t )‖2 +

2λ2E zn
t · h(Xn, zn

t ) + λ2E |h(Xn, zn
t )|2 .

Substituting Assumption A4 with y1 = zn
t and y2 = 0 gives,

d

dt
E|zn

t |2 = −2βE|zn
t |2 + 2Ezn

t · f(Xn, 0) + E ‖g(Xn, zn
t )‖2

+ 2λ2E zn
t · h(Xn, zn

t ) + λ2E |h(Xn, zn
t )|2 .
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Using Young’s inequality twice and substituting the bounds on f, g and h (Assumption
A2 ),

d

dt
E|zn

t |2 = −2βE|zn
t |2 +

β

2
E |zn

t |2 +
2
β
E |f(Xn, 0)|2 + E ‖g(Xn, zn

t )‖2

+
β

2
E |zn

t |2 + λ2
2

2
β
E |h(Xn, zn

t )|2 + λ2E |h(Xn, zn
t )|2

≤ −βE|zn
t |2 +

[
2
β

c2
f (0) + c2

g + λ2
2

2
β

c2
h + λ2c

2
h

]
.

The desired result follows from Gronwall’s inequality.
Proof. of Lemma 2.3 We rewrite (2.4) in terms of the compensated Poisson

process,

Y n
m+1 = Y n

m + f(Xn, Y n
m) δt + g(Xn, Y n

m)∆Wn
m + h(Xn, Y n

m) ∆Nn
m

= Y n
m + f(Xn, Y n

m) δt + g(Xn, Y n
m)∆Wn

m + h(Xn, Y n
m) ∆N̂n

m

+ λ2h(Xn, Y n
m) δt.

Squaring and taking expectations,

E
∣∣Y n

m+1

∣∣2 = E |Y n
m|2 + δt2 E |f(Xn, Y n

m)|2 + δtE ‖g(Xn, Y n
m)‖2

+ λ2δtE |h(Xn, Y n
m)|2 + λ2

2δt
2 E |h(Xn, Y n

m)|2 + 2δtEY n
m · f(Xn, Y n

m)

+ 2λ2δtEY n
m · h(Xn, Y n

m) + 2λ2δt
2Ef(Xn, Y n

m)h(Xn, Y n
m).

We subtract and add 2δtEY n
m · f(Xn, 0),

E
∣∣Y n

m+1

∣∣2 = E |Y n
m|2 + δt2 E |f(Xn, Y n

m)|2 + δtE ‖g(Xn, Y n
m)‖2

+ λ2δtE |h(Xn, Y n
m)|2 + λ2

2δt
2 E |h(Xn, Y n

m)|2 + 2δtEY n
m · f(Xn, Y n

m)
− 2δtEY n

m · f(Xn, 0) + 2δtEY n
m · f(Xn, 0)

+ 2λ2δtEY n
m · h(Xn, Y n

m) + 2λ2δt
2Ef(Xn, Y n

m)h(Xn, Y n
m).

For each one of the last three terms on the right hand side we use Young’s inequality,

E
∣∣Y n

m+1

∣∣2 = E |Y n
m|2 + δt2 E |f(Xn, Y n

m)|2 + δtE ‖g(Xn, Y n
m)‖2

+ λ2δtE |h(Xn, Y n
m)|2 + λ2

2δt
2 E |h(Xn, Y n

m)|2 + 2δtEY n
m · f(Xn, Y n

m)

− 2δtEY n
m · f(Xn, 0) + δt

β

2
E |Y n

m|2 + δt
2
β
E |f(Xn, 0)|2

+ δt
β

2
E |Y n

m|2 + δt
2
β

λ2
2 E |h(Xn, Y n

m)|2 + λ2δt
2E |f(Xn, Y n

m)|2

+ λ2δt
2E |h(Xn, Y n

m)|2 .

Using the boundedness of the functions f, g and h (Assumption A2 ),

E
∣∣Y n

m+1

∣∣2 ≤ (1 + βδt)E |Y n
m|2 + δt

(
c2
g + λ2c

2
h +

2c2
f (0)
β

+
2λ2

2

β
c2
h

)

+ δt2
(
λ2

2c
2
h + λ2c

2
h

)
+ δt2 E |f(Xn, Y n

m)|2
+ 2δtEY n

m · f(Xn, Y n
m)− 2δtEY n

m · f(Xn, 0)

+ λδt2E |f(Xn, Y n
m)|2 .
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For the third line on the right hand side we use Assumption A4,

E
∣∣Y n

m+1

∣∣2 ≤ (1 + βδt)E |Y n
m|2 + δt

(
c2
g + λ2c

2
h +

2c2
f (0)
β

+
2λ2

2

β
c2
h

)

+ δt2
(
λ2

2c
2
h + λ2c

2
h

)
+ δt2 E |f(Xn, Y n

m)|2

− 2βδtE |Y n
m|2

+ λδt2E |f(Xn, Y n
m)|2

= (1− βδt)E |Y n
m|2 + δt

(
c2
g + λ2c

2
h +

2c2
f (0)
β

+
2λ2

2

β
c2
h

)

+ δt2
(
λ2

2c
2
h + λ2c

2
h

)
+ δt2(1 + λ2)E |f(Xn, Y n

m)|2 .

(3.3)

Rewriting f(Xn, Y n
m) = f(Xn, Y n

m)− f(Xn, 0) + f(Xn, 0) and using Assumption A2,

|f(Xn, Y n
m)|2 ≤ 2L2

f |Y n
m|2 + 2c2

f (0), (3.4)

which substituted into the last term of (3.3) gives,

E
∣∣Y n

m+1

∣∣2 ≤ (
1− βδt + 2L2

f (1 + λ2) δt2
)
E |Y n

m|2

+ δt

(
c2
g + λ2c

2
h +

2c2
f (0)
β

+
2λ2

2

β
c2
h

)
+ δt2(1 + λ2)

[
2c2

f (0) + λ2c
2
h

]
,

and the desired result follows from the discrete Gronwall inequality (3.1).

Proof. of Lemma 2.4 We rewrite (2.1) in terms of the compensated Poisson
process,

Xn+1 = Xn + A(Xn)∆t + b(Xn) ∆Bn + c(Xn)∆Pn

= Xn + A(Xn)∆t + b(Xn) ∆Bn + c(Xn)∆P̂n + λ1c(Xn)∆t.

Squaring, taking expectations and using the Itô isometry,

E |Xn+1|2 = E |Xn|2 +
∆t2

M2
E

∣∣∣∣∣
M∑

m=1

a(Xn, Y n
m)

∣∣∣∣∣

2

+ ∆tE ‖b(Xn)‖2

+ λ1∆tE |c(Xn)|2 + λ2
1∆t2E |c(Xn)|2

+
2∆t

M

M∑
m=1

EXn · a(Xn, Y n
m) + 2∆tλ1EXn · c(Xn)

+
2∆t2λ1

M

M∑
m=1

E c(Xn) · a(Xn, Y n
m).



MULTISCALE INTEGRATION SCHEMES FOR JUMP-DIFFUSIONS 13

Using the inequality (a1+· · ·+αn)2 ≤ n(a2
1+· · ·+a2

n) together with Young’s inequality,

E |Xn+1|2 ≤ E |Xn|2 +
∆t2

M
E

M∑
m=1

|a(Xn, Y n
m)|2 + ∆tE ‖b(Xn)‖2

+ λ1∆tE |c(Xn)|2 + λ2
1∆t2E |c(Xn)|2 + ∆tE |Xn|2

+
∆t

M

M∑
m=1

E |a(Xn, Y n
m)|2 + ∆tλ1E |Xn|2 + ∆tλ1E |c(Xn)|2

+ ∆t2λ1E |c(Xn)|2 +
∆t2λ1

M

M∑
m=1

E |a(Xn, Y n
m)|2 .

Using Assumption A1, we get,

E |Xn+1|2 ≤ (1 + ∆t + λ1∆t)E |Xn|2 + 2(1 + λ1)K2(1 + E |Xn|2)∆t

+ 2(1 + λ1)K2 sup
m≥0

[
E |Y n

m|2
]

∆t + 2∆t2(1 + λ2)K2(1 + E |Xn|2)

+ 2∆t2(1 + λ2)K2 sup
m≥0

[
E |Y n

m|2
]
.

Using Lemma 2.3, we get, for small enough ∆t,

E |Xn+1|2 ≤
[
1 + 2(1 + λ1)(1 + 2K2)∆t

]
E |Xn|2 + 4(1 + λ1)K2(1 + K2)∆t.

and the desired result follows from the discrete Gronwall inequality (3.1).

Proof. of Lemma 2.5 Eq. (2.4) together with Assumption A2 implies,

E
∣∣Y n

m+1 − Y n
m

∣∣2 = E
∣∣f(Xn, Y n

m)δt + g(Xn, Y n
m)∆Wn

m + h(Xn, Y n
m)∆N̂n

m

+ λ2h(Xn, Y n
m)δt

∣∣2

≤ 4E |f(Xn, Y n
m)|2 δt2 + 4E ‖g(Xn, Y n

m)‖2 δt

+ 4λ2 E |h(Xn, Y n
m)|2 δt + 4λ2

2E |h(Xn, Y n
m)|2 δt2

≤ 8L2δt2 E |Y n
m|2 + 8c2

f (0)δt2 + 4c2
g δt

+ 4λ2c
2
h δt + 4λ2

2c
2
h δt2,

where we have used (3.4). Lemma 2.3 implies that for δt small enough,

E
∣∣Y n

m+1 − Y n
m

∣∣2 ≤ 8
(
c2
g + λ2c

2
h

)
δt.
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Proof. of Lemma 2.6 Expanding (2.6),

E
∣∣∣ 1
M

M∑
m=1

a (Xn, zn
m)− ā(Xn)

∣∣∣
2

=
1

M2

M∑
m=1

M∑
p=1

{
E [a(Xn, zn

m)− ā(Xn)] · [a(Xn, zn
p )− ā(Xn)

]}

=
2

M2

M∑
m=1

M∑
p=m+1

E
{
[a(Xn, zn

m)− ā(Xn)] · [a(Xn, zn
p )− ā(Xn)

]}

+
1

M2

M∑
m=1

E {[a(Xn, zn
m)− ā(Xn)] · [a(Xn, zn

m)− ā(Xn)]} .

We estimate the summand using the Cauchy-Schwarz inequality,

E
{
[a(Xn, zn

m)− ā(Xn)] · [a(Xn, zn
p )− ā(Xn)

]}

= E
{
[a(Xn, zn

m)− ā(Xn)] · E [
a(Xn, zn

p )− ā(Xn)|zn
m

]}

= E
{
[a(Xn, zn

m)− ā(Xn)] · Ezn
m

[
a(Xn, zn

p−m)− ā(Xn)
]}

≤ max
m

{
E [a(Xn, zn

m)− ā(Xn)]2
}1

2
{
E

[
Ezn

m

[
a(Xn, zn

p−m)− ā(Xn)
]]2}1

2
.

For the left hand term we use the linear growth bound of the functions a, ā and
Lemmas 2.2, 2.4,

E [a(Xn, zn
m)− ā(Xn)]2 ≤ 2E |a(Xn, zn

m)|2 + 2E |ā(Xn)|2

≤ 4K2(1 + K1 + K3).

Combining this with the bound on the mixing rate, γαt, we get,

E
{
[a(Xn, zn

m)− ā(Xn)] · [a(Xn, zn
p )− ā(Xn)

]} ≤ 2L
√

1 + K1 + K3γα(p−m)δt.

Set k1 = 2L
√

1 + K1 + K3γ,

E
∣∣∣ 1
M

M∑
m=1

a (Xn, zn
m)− ā(Xn)

∣∣∣
2

≤ 2k1

M2

M∑
m=1

M∑
p=m+1

α(p−m)δt +
k1 α0

M
.

We split the upper triangular sum into two summands. One is of terms which are near
the diagonal, and the second summand is for terms which are far from the diagonal.
Hence,

E
∣∣∣ 1
M

M∑
m=1

a (Xn, zn
m)− ā(Xn)

∣∣∣
2

≤ 2k1

M2

M∑
m=1

m+l∑
p=m+1

α(p−m)δt

+
2k1

M2

M∑
m=1

M∑

p=m+l+1

α(p−m)δt +
k1

M

≤ 2k1 l

M
+ 2k1 αlδt +

k1

M
.
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Set l = 1
δt (− logα(Mδt)). Thus, there exist constants k2, k3, k4 such that,

E
∣∣∣ 1
M

M∑
m=1

a (Xn, zn
m)− ā(Xn)

∣∣∣
2

≤ k2
− logα(Mδt)

Mδt
+ k3

1
Mδt

+ k4
1
M

.

This concludes the proof.
Proof. of Lemma 2.7 Define tδt = bt/δtcδt. Let Y n

t be the Euler approximation
Y n

m, interpolated continuously by

Y n
t =

∫ t

0

f(Xn, Yn,sδt
) ds +

∫ t

0

g(Xn, Yn,sδt
) dWn,s +

∫ t

0

h(Xn, Yn,sδt
) dNn,s.

Define

vt = Y n
t − zn

t .

Applying the Itô formula for E |vt|2,
d

dt
E |vt|2 = 2Evt · [f(Xn, Yn,tδt

)− f(Xn, zn
t )] + E ‖g(Xn, Yn,tδt

)− g(Xn, zn
t )‖2

+ 2λ2E vt · [h(Xn, Yn,tδt
)− h(Xn, zn

t )] + λ2E |h(Xn, Yn,tδt
)− h(Xn, zn

t )|2
= 2Evt · [f(Xn, Yn,tδt

)− f(Xn, Y n
t )] + 2Evt · [f(Xn, Y n

t )− f(Xn, zn
t )]

+ E ‖g(Xn, Yn,tδt
)− g(Xn, zn

t )‖2 + 2λ2E vt · [h(Xn, Yn,tδt
)− h(Xn, Y n

t )]

+ 2λ2E vt · [h(Xn, Y n
t )− h(Xn, zn

t )] + λ2E |h(Xn, Yn,tδt
)− h(Xn, zn

t )|2 .

Using Assumption A4,

d

dt
E |vt|2 ≤ 2Evt · [f(Xn, Yn,tδt

)− f(Xn, Y n
t )]− 2βE |vt|2

+ E ‖g(Xn, Yn,tδt
)− g(Xn, zn

t )‖2 + 2λ2E vt · [h(Xn, Yn,tδt
)− h(Xn, Y n

t )]

+ 2λ2E vt · [h(Xn, Y n
t )− h(Xn, zn

t )] + λ2E |h(Xn, Yn,tδt
)− h(Xn, zn

t )|2 ,

followed by Cauchy-Schwarz inequality, and Assumption A2,

d

dt
E |vt|2 ≤ 2Lf

√
E |vt|2

√
E |Yn,tδt

− Y n
t |2 − 2βE |vt|2

+ LgE |Yn,tδt
− zn

t |2 + 2λ2Lh

√
E |vt|2

√
E |Yn,tδt

− Y n
t |2

+ 2λ2LhE |vt|2 + λ2LhE |Yn,tδt
− zn

t |2

= 2 (Lf + λ2Lh)
√
E |vt|2

√
E |Yn,tδt

− Y n
t |2

− 2 (β − λ2Lh)E |vt|2 + (Lg + λ2Lh)E |Yn,tδt
− zn

t |2 .

Using Young’s inequality,

d

dt
E |vt|2 ≤ 2 (Lf + λ2Lh)

√
E |vt|2

√
E |Yn,tδt

− Y n
t |2

− 2 (β − λ2Lh)E |vt|2 + 2 (Lg + λ2Lh)E |Y n
t − zn

t |2

+ 2 (Lg + λ2Lh)E |Yn,tδt
− Y n

t |2

= 2 (Lf + λ2Lh)
√
E |vt|2

√
E |Yn,tδt

− Y n
t |2

− 2 (β − 2λ2Lh − Lg)E |vt|2

+ 2 (Lg + λ2Lh)E |Yn,tδt
− Y n

t |2 .
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Using Lemma 2.5,

d

dt
E |vt|2 ≤ 2(Lf + λ2Lh)

√
E |vt|2

√
K4δt

− 2 (β − 2λ2Lh − Lg)E |vt|2 + 2 (Lg + λ2Lh)K4δt.

(3.5)

Let T1 = inf
{

t : E |vt|2 = 1
}

. Since v0 = 0, the line segment [0, T1) is not empty.
We first solve (3.5) up until time T1, and then show that T1 = ∞, which implies that
the bound for E |vt|2 is everywhere true. For t < T1 we have

d

dt
E |vt|2 ≤ 2(Lf + λ2Lh)

√
K4δt

− 2 (β − 2λ2Lh − Lg)E |vt|2 + 2 (Lg + λ2Lh)K4δt.

For δt small enough, the third term on the right hand side is smaller than the first
term. Hence

d

dt
E |vt|2 ≤ −2 (β − 2λ2Lh − Lg)E |vt|2 + 4(Lf + λ2Lh)

√
K3δt.

Gronwall’s inequality implies,

E |vt|2 ≤ (2Lf + λ2Lh)
√

K4δt

β − 2λ2Lh − Lg
. (3.6)

With δt small enough, the right hand side of (3.6) can be made smaller than one,
hence (3.6) is valid for all t.

Proof. of Lemma 2.8 By definition,

E |ā(Xn)−A(Xn)|2 = E

∣∣∣∣∣
∫

a(Xn, y)µXn(dy)− 1
M

M∑
m=1

a (Xn, Y n
m)

∣∣∣∣∣

2

≤ In
1 + In

2 ,

(3.7)

where

In
1 = 2E

∣∣∣∣∣
∫

a(Xn, y)µXn(dy)− 1
M

M∑
m=1

a (Xn, zn
m)

∣∣∣∣∣

2

In
2 = 2E

∣∣∣∣∣
1
M

M∑
m=1

a (Xn, zn
m)− 1

M

M∑
m=1

a (Xn, Y n
m)

∣∣∣∣∣

2

,

where zn
t is the family of processes defined by (2.3). In

1 is the difference between
the ensemble average of a(Xn, ·) with respect to the (exact) invariant measure of zn

t ,
and its empirical average over M equi-distanced sample points. In

2 is the difference
between empirical averages of a(Xn, ·) over M equi-distanced sample points, once for
the process zn

t , and once for its Euler approximation Y n
m.

The estimation of In
1 , is given in Lemma 2.6,

In
1 = 2E

[∫
a(Xn, y)µXn(dy)− 1

M

M∑
m=1

a (Xn, zn
m)

]2

≤ 2K5

[− logα Mδt + 1
Mδt

+
1
M

]
.

(3.8)
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We proceed with estimating In
2 using Assumption A1,

In
2 = 2E

∣∣∣∣∣
1
M

M∑
m=1

a (Xn, Y n
m)− 1

M

M∑
m=1

a (Xn, zn
m)

∣∣∣∣∣

2

≤ 2
M2

M

M∑
m=1

E |a (Xn, Y n
m)− a (Xn, zn

m)|2

≤ 2L2 max
m≤M

E |Y n
m − zn

m|2 ,

Using Lemma 2.7 we get,

In
2 ≤ 2L2K8

√
δt. (3.9)

Combining (3.8) and (3.9),

E |ā(Xn)−A(Xn)|2 ≤ K6

[− logα Mδt + 1
Mδt

+
1
M

+
√

δt

]
, (3.10)

which is uniform in n ≤ T/∆t
Proof. of Lemma 2.9 Set En = E supl≤n |X̄l −Xl|2, then

En = E sup
l≤n

∣∣∣∣
l−1∑

i=0

[
ā(X̄i)−A(Xi)

]
∆t +

l−1∑

i=0

[
b(X̄i)− b(Xi)

]
∆Wi

+
l−1∑

i=0

[
c(X̄i)− c(Xi)

]
∆Pi

∣∣∣∣
2

= E sup
l≤n

∣∣∣∣
l−1∑

i=0

[
ā(X̄i)−A(Xi)

]
∆t +

l−1∑

i=0

[
b(X̄i)− b(Xi)

]
∆Wi

+
l−1∑

i=0

[
c(X̄i)− c(Xi)

]
∆P̂i +

l−1∑

i=0

[
c(X̄i)− c(Xi)

]
∆t

∣∣∣∣
2

≤ 4E sup
l≤n

∣∣∣∣∣
l−1∑

i=0

[
ā(X̄i)−A(Xi)

]
∆t

∣∣∣∣∣

2

+ 4E sup
l≤n

∣∣∣∣∣
l−1∑

i=0

[
b(X̄i)− b(Xi)

]
∆Wi

∣∣∣∣∣

2

+ 4E sup
l≤n

∣∣∣∣∣
l−1∑

i=0

[
c(X̄i)− c(Xi)

]
∆P̂i

∣∣∣∣∣

2

+ 4E sup
l≤n

∣∣∣∣∣
l−1∑

i=0

[
c(X̄i)− c(Xi)

]
∆t

∣∣∣∣∣

2

.

We split the first term on the right hand side,

En ≤ 8E sup
l≤n

∣∣∣∣∣
l−1∑

i=0

[
ā(X̄i)− ā(Xi)

]
∆t

∣∣∣∣∣

2

+ 8E sup
l≤n

∣∣∣∣∣
l−1∑

i=0

[ā(Xi)−A(Xi)]∆t

∣∣∣∣∣

2

+ 4E sup
l≤n

∣∣∣∣∣
l−1∑

i=0

[
b(X̄i)− b(Xi)

]
∆Wi

∣∣∣∣∣

2

+ 4E sup
l≤n

∣∣∣∣∣
l−1∑

i=0

[
c(X̄i)− c(Xi)

]
∆P̂i

∣∣∣∣∣

2

+ 4E sup
l≤n

∣∣∣∣∣
l−1∑

i=0

[
c(X̄i)− c(Xi)

]
∆t

∣∣∣∣∣

2

.

(3.11)
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The first and fifth terms on the right hand side are estimated using the Lipschitz
continuity of ā and c,

8E sup
l≤n

∣∣∣∣∣
l−1∑

i=0

[
ā(X̄i)− ā(Xi)

]
∆t

∣∣∣∣∣

2

≤ 8E sup
l≤n

L2l

l−1∑

i=0

|X̄i −Xi|2 ∆t2

≤ 8L2T

n−1∑

i=0

E|X̄i −Xi|2 ∆t ≤ 8L2T

n−1∑

i=0

Ei ∆t

4E sup
l≤n

∣∣∣∣∣
l−1∑

i=0

[
c(X̄i)− c(Xi)

]
∆ti

∣∣∣∣∣

2

≤ 4E sup
l≤n

L2l

l−1∑

i=0

E|X̄i −Xi|2 ∆t2

≤ 4L2T

n−1∑

i=0

E|X̄i −Xi|2 ∆t ≤ 4L2T

n−1∑

i=0

Ei ∆t.

(3.12)

The third and fourth terms are estimated using the Doob inequality for martingales
followed by the Itô isometry, and the Lipschitz continuity of b and c,

4E sup
l≤n

∣∣∣∣∣
l−1∑

i=0

[
b(X̄i)− b(Xi)

]
∆Wi

∣∣∣∣∣

2

= 16
n−1∑

i=0

E
∥∥b(X̄i)− b(Xi)

∥∥2 ∆t

≤ 16L2
n−1∑

i=0

E|X̄i −Xi|2 ∆t ≤ 16L2
n−1∑

i=0

Ei ∆t

4E sup
l≤n

∣∣∣∣∣
l−1∑

i=0

[
c(X̄i)− c(Xi)

]
∆P̂i

∣∣∣∣∣

2

= 16λ1

n−1∑

i=0

E
∣∣c(X̄i)− c(Xi)

∣∣2 ∆t

≤ 16λ1L
2

n−1∑

i=0

E|X̄i −Xi|2 ∆t ≤ 16λ1L
2

n−1∑

i=0

Ei ∆t.

(3.13)

The second term on the right hand side of (3.11) can be bounded as follows:

8E sup
l≤n

∣∣∣∣∣
l−1∑

i=0

[ā(Xi)−A(Xi)]∆t

∣∣∣∣∣

2

≤ 8T 2 max
i<n

E |ā(Xi)−A(Xi)|2 . (3.14)

Combining eqs. (3.11)–(3.14) and Lemma 2.8, we obtain a discrete linear integral
inequality,

En ≤ 4L2(2T + 4 + 4λ1 + T )
n−1∑

i=1

Ei ∆t

+ 8T 2K6

(− logα Mδt + 1
Mδt

+
1
M

+
√

δt

)
,

with initial condition E0 = 0. It follows that for sufficiently small ∆t,

En ≤ 8T 2K6

(− logα Mδt + 1
Mδt

+
1
M

+
√

δt

) {
1 + 4L2(2T + 4 + 4λ1 + T )∆t

}n

≤ 8T 2K6

(− logα Mδt + 1
Mδt

+
1
M

+
√

δt

)
e4L2(3T+4+4λ1)T .

This estimate proves the theorem with K7 = 8T 2K6e
4L2(3T+4+4λ1)T .
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4. Weak Convergence. In the previous section we discussed the convergence
of the multiscale scheme to the averaged system. We analyzed the averaged system
in the strong sense. In this case the Itô isometry assures that one can not average
the diffusion coefficient or the jump coefficient. In this section we deal with the weak
form of the effective dynamics. We analyze the convergence of the numerical method
defined by eqs. (1.6), (1.7) and (1.8) to the solution x̄t of the effective dynamics (1.3)
at time t = tn. The Poisson processes in (1.1) are simple Poisson processes, i.e., the
jump coefficients depend only on the current state just like the drift and the diffusion
coefficients. However, in the effective dynamics, while the drift and the diffusion
coefficients still only depend on the current position of the effective variable, the
jump coefficient depends also on an additional random variable which is distributed
like the invariant measure. Hence the Poisson process of the effective dynamics is not
a simple Poisson process.

In this section we change Assumption A1 to the following:
A1. The functions a = a(x, y), b = b(x, y) and c = c(x, y) in (1.1a) are four

times continuously differentiable with all partial derivatives having polyno-
mial growth.

Theorem 4.1. Let F(x) be four times continuously differentiable with polynomial
growth. Let Xn be the solution of (1.8), let x̄t be the solution of (1.3), and let X̄n

denote the Euler approximation for x̄t. Then

sup
n≤T/∆t

∣∣EF(X̄n)− EF(Xn)
∣∣ ≤ C

{√
− logα Mδt + 1

Mδt
+

1
M

+ δt1/2 + ∆t1/2

}
.

Proof. of Theorem 4.1. Let N ≤ T/∆t. Define an auxiliary function u(k, x) for
k ≤ N as follows:

u(N, x) = F(x), u(k, x) = E
[
u

(
k + 1, x + ā(x)∆t + b̄(x)∆W

)]
.

The function u(k, x) shares the same properties as the functions F , a, b, c. Note that
u(0, x) = EF(X̄N ) and u(N,XN ) = F(XN ) which implies that we need to estimate,

∣∣EF(XN )− EF(X̄N )
∣∣ = |E (u(N, XN )− u(0, x))|

=

∣∣∣∣∣E
(

N−1∑
n=0

u(n + 1, Xn+1)− u(n,Xn)

)∣∣∣∣∣ .

Add and subtract equal terms (the terms in the brackets {})
∣∣EF(XN )− EF(X̄N )

∣∣

=

∣∣∣∣∣E
(

N−1∑
n=0

u(n + 1, Xn+1)− u(n,Xn)−
{

u(n + 1, X̄n,Xn

n+1 )− u(n,Xn)
})∣∣∣∣∣

=

∣∣∣∣∣E
(

N−1∑
n=0

u(n + 1, Xn+1)− u(n + 1, Xn)−
{

u(n + 1, X̄n,Xn

n+1 )− u(n + 1, Xn)
})∣∣∣∣∣ ,

where in the third line we exchange the second and fourth summands. In view of the
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differentiability of u,
∣∣EF(XN )− EF(X̄N )

∣∣

=
∣∣∣∣E

( N−1∑
n=0

∂u

∂x
(n + 1, Xn)

{
Xn+1 −Xn −

(
X̄n,Xn

n+1 −Xn

)}

+
∂2u

2∂x2
(n + 1, Xn)

{
(Xn+1 −Xn)2 −

(
X̄n,Xn

n+1 −Xn

)2
}

+ Rn(Xn+1) + Rn(X̄n,Xn

n+1 )
)∣∣∣∣,

where

Rn(z) =
∂3u

3!∂x3
(n + 1, Xn + θn,z(z −Xn)) (z −Xn)3,

and 0 ≤ θn,z ≤ 1. To bound this remainder we use the following: first the polynomial

growth of u(n, x), which allows us to use the bound E |Xn+1|p + E
∣∣∣X̄n,Xn

n+1

∣∣∣
p

< ∞
[29]. Second, we use the moment time deviation estimate [29] E |Xn+1 −Xn|3 +

E
∣∣∣X̄n,Xn

n+1 −Xn

∣∣∣
3

≤ C1∆t3/2. Hence we get,

∣∣EF(XN )− EF(X̄N )
∣∣

≤
N−1∑
n=0

E
{∣∣∣∣

∂u

∂x

∣∣∣∣
∣∣∣EXn

[
Xn+1 −Xn −

(
X̄n,Xn

n+1 −Xn

)]∣∣∣
}

+ E
{∣∣∣∣

∂2u

2∂x2

∣∣∣∣
∣∣∣∣EXn

[
(Xn+1 −Xn)2 −

(
X̄n,Xn

n+1 −Xn

)2
]∣∣∣∣ + C2∆t3/2

}
.

Multiply and divide by ∆t and use the conditional infinitesimal moments of (1.3) to
get
∣∣EF(XN )− EF(X̄N )

∣∣

=
N−1∑
n=0

∆tE
{∣∣∣∣

∂u

∂x

∣∣∣∣ |EXn [A(Xn) + λc(Xn, Y m
n )− (ā(Xn) + λ1c(Xn, ξXn))]|

}

+
N−1∑
n=0

∆tE
{∣∣∣∣

∂2u

2∂x2

∣∣∣∣
∣∣EXn

[
BBT (Xn) + λ1c

2(Xn, Y m
n )− (

b̄bT (Xn) + λ1c
2(Xn, ξXn)

)]∣∣
}

+ C2∆t1/2.

Using again the polynomial growth of the function u and its derivatives together with
the moment estimates for JSDEs [29] we get,

∣∣EF(XN )− EF(X̄N )
∣∣

≤ C3

N−1∑
n=0

∆tE {|A(Xn)− ā(Xn) + λ1EXn [c(Xn, Y m
n )− c(Xn, ξXn)]|}

+ C4

N−1∑
n=0

∆tE
{∣∣BBT (Xn)− b̄bT (Xn) + λ1EXn

[
c2(Xn, Y m

n )− c2(Xn, ξXn)
]∣∣}

+ C2∆t1/2.
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Using Lemma 2.8 we get

∣∣EF(XN )− EF(X̄N )
∣∣ ≤ C5

N−1∑
n=0

∆t

{√
− logα Mδt + 1

Mδt
+

1
M

+ δt1/2

}
+ C2∆t1/2

= C

{√
− logα Mδt + 1

Mδt
+

1
M

+ δt1/2 + ∆t1/2

}
.

5. Discussion. The main aim of this work is to show that multiscale integration
schemes can be applied to jump-diffusion systems. We proved strong convergence
uniformly in time for the case (1.6), (1.7a), (1.8) and (1.5), and we proved weak
convergence for the case (1.6), (1.7), (1.8) and (1.3). Our analysis focuses on the
simplest case, where both the macro- and micro-solvers use an Euler scheme, but the
analysis can be extended to other schemes like [30, 26].

All along this work we used the fact that the fast dynamics is ergodic, and thus
paid no attention to the way we choose the initial value of the fast dynamics. The
main assumption behind this is that we have a separation of time scales and we
explicitly know which the fast and which the slow variables are. Furthermore, as in
[1], the formulas for the various terms in the equations are known, so that the fast
dynamics can be simulated at fixed values of the slow variables, and averages over
the computationally approximated invariant measures can be evaluated. It would be
interesting to analyze the case where the right-hand-sides of the equations are not
explicitly known, and we only have data from the full “black box” simulation (the
“equation-free” case). Estimating the local effective dynamics [31, 32] from dynamic
data becomes then an important consideration.

The situation becomes more complicated (and interesting) when separation of
time scales is known (or hypothesized) to exist, but its parameterization is not known,
i.e. we do not know which of the model variables or combination of variables is slow.
It is also conceivable that the “micro simulator” is not the implementation of an ex-
plicit SDE, but rather a different stochastic process that can effectively be modeled as
an SDE; in this case the formulas for its right-hand-side are not available, and have to
be estimated “on the fly” from short bursts of direct stochastic simulation. One must
then use simulation data to detect good parameterizations of the slow variables (see,
for example, the diffusion map approach in [33]), and invent procedures for consis-
tently initializing the full simulator given the present value of such a parameterization.
This is the subject of present and future research.
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